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A new method in the many-body problem 

I V Krasovsky and V I Peresada 
Deparlment of Physics, Kharkov State University. 4 Svoboda Square, Kharkov 310077. Ukraine 

Received 24 August 1994 

Abstract. A new method is proposed forexactcdculalion ofthe energy levels of Hamiltonians 
H and the quantities Spl f ( H  t W )  - f ( H ) ) ,  where W is a finite-dimensional perturbation, in 
the m e  when H and H + W may be represented by a certain wide class of (2" i I)-diagond 
matrices. As an example. two problems for a linear chain of spins with nearest- and next-nearest 
neighbour interactions described by the Heisenberg Hamiltonian are considered. 

1. Introduction 

A number of problems which involve a linear chain of particles with interactions between 
several (n)  'shells' of neighbours can be formulated as follows. The matrix H of the 
Hamiltonian is given which has a (;?n + I)-diagonal form (H = (Hit), where Hjp = 0 if 
I j -kJ z n), and whose rows are identical (Hj, = ao; Hj = I f j  j - l  = a l ;  . . , ; Hj j+n = 
Hj j p n  = Q,) starting with an rth row (r is a finite number). The problem is to find the 
spectrum of H and the changes in thermodynamic functions, caused by a finite-dimensional 
perturbation W such that H + W is still (2n + 1)-diagonal, which can be expressed in the 
form Sp( f (X  + W )  - f ( H ) ] .  In  the present work, we shall solve this problem using the 
fact that, as is easily seen, the above described Hamiltonian can be written in the form 
H = T ( L )  + V ,  where T ( x )  is a polynomial of degree n, L is a hidiagonal (J-)matrix with 
identical rows, and V is finite-dimensional. In this case L is associated with the Chebyshev 
polynomials. We shall see, however, that these problems can be tackled whenever L is 
associated with polynomials having a known weight function. The latter fact enlarges the 
class of Hamiltonians amenable to our treatment. 

The method we develop here is a generalization of the J-matrix method proposed about 
25 years ago by Peresada [I-51. The original method allowed us to solve exactly the 
above mentioned problem for n = 17 (H is then a J-matrix) and, approximately, similar 
problems for various Hamiltonians including those for 2- and 3-dimensional systems (since 
any symmetric mahix can be reduced to a set of J-matrices). In fact, the recursion method 
of Haydock etal 1671, which is known wider, uses the same basic ideas, but the standard 
reference (71 does not contain the early developments [1-51 of the technique, and some 
important features of the method remain little known to the community. We try to fill in 
this gap partially in our conclusions. 

2. The method 

Consider the (2n + I)-diagonal matrix H = T ( L )  + V (Hi, = 0 if li - j l  z n )  of a 
self-adjoint operator in an orthonormal basis [ei]zo of a Hilbert space 'H, where T ( x )  is a 

t Although the prwf of the equation for the shift funcfion in section 2 is new even in the case n = 1. 
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polynomial of degree n.  L is a 3-matrix ( L  = (Li j ) ,  Lij = Lji and Li, = 0 if li - j l  z l), 
and V is a ((7.n + I)-diagonal) operator such that Vel = 0 if i > r .  We shall assume that 
Hii.  Lij, and the coefficients of T ( x )  are real. 

I V Krasovsky and V I Peresada 

The secular equation for H is 

( T ( L )  - A2)p = -VY, p E 7 f .  (1) 
Note that H can be viewed as a block-tridiagonal matrix with blocks being n x n matrices, 
From the general theory of block-tridiagonal matrices [8], we know that an eigenvector of 
such a matrix 

Ao Bo 0 [: i: ": Bi ,.,I d i m A , = d i m B i = n  i = O , I , . _ .  (2) 

can be expressed in the form 9 = P x ,  where 

P=(")  

and the n x n matrix polynomials (of the first kind) P,(A) are defined as followst: 

P-1 = 0 Po = I ... Pi = -BZI((Ai-i - h1)Pi-1 + B:-2Pi-2) . I .  

(3) 
x is an n-component vector 

(Further we shall use the superscript (PY(A)) to indicate polynomials associated with a 
block-tridiagonal M di@erentfrom H.) 

Thus we may rewrite (1) as 

Px = -RVPx where R = ( T ( L )  -U)-'. (4) 

(VP), = vss-1Ps-1 + VWPT + VS.+I4~+1. 

The sth component of the block-vector V P is 

so 

Taking the inner product of (4) with e,,+;, we have 
n-I *-I 

P,,ijxj = - (VP),.yx,(Re.,+x. en,+;) 
] S O  I j . k O  

( 5 )  

t I f  some of the matrices Bi are degenerate (due to V) .  we may add 10 thcm regularizing matrix elemcnls ,9,x so 
that 5;' would exist and consider the limit as 6 , ~  -t 0 in the resulu. 
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We now note that [e,]z8 is the basis where J-matrix L is defined and consequently, 
according to the known property of J-matrices [9 ] ,  ei = pf(L)eo, where p"h) are the 
polynomials associated with L ((3) for n = 1). 

Thus 

(A is outside the spectrum of T ( L ) ) ,  where the spectral density p(p)  = (dE,eo, eo)/dp, 
and E, is the resolution of the identity of L. The effectiveness of the method is based on 
the fact that the p(p)'s are known for a large class of I-matrices [IO] whose p f ( h )  are 
known orthogonal polynomials (Laguerre, Jacobi. etc). The p ( p ) ' s  are the weight functions 
of corresponding polynomials. 

Hereafter we shall need only one of these matrices (although most of OUT consideration 
will be general), that is 

\O 
pJ"(h) are the Chebyshev polynomials of the second kind and p c h ( h )  = !J- if 
h E [O, I] and 0 otherwise. Thus, provided that the roots of T(p) - h = 0 are found, the 
integrals in (6) can be analytically calculated. 

The matrix H described in section 1 may be represented in the form T ( L )  + V, where 

and, consequently, the spectral density of L is 

a ,  6, and coefficients of T(L) are defined in terms of the matrix elements of H. 
The spectrum of L is known: it is continuous and f i l l s  the interval [a-26. a+%]. Hence 

the spectrum of T ( L )  is also known and continuous, and since V is finite-dimensional, its 
addition to T ( L )  may lead only to the formation of points of the discrete spectrum (always 
leaving the continuous one invariant). But at such points, equations (5) for all f ,  i must hold. 
Let us fix t = 0. Then for i = 0. I ,  . . . , n - 1 we shall have a system of linear equations in 
the variables xo, XI, . . . ,&-I. So the condition for finding the discrete eigenvalues of H is 

(9) det(P0 + W) = 16ij + W;j(h)lg-l = 0 

where 

We have just shown the necessity of this condition. However, it is also sufficient. Indeed, 
let h be a solution of (9). Then the system (5) f o r t  = 0, i = 0, , . . , n - 1 holds true for h 
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and some [x;):::. To prove that h is an eigenvalue of H ,  it suffices to show that the same 
h. (xi 17~;  satisfy systems (5) for t = 1,2, . . . . 

Let us set both sides of (5)  for f = - 1  to be zero and apply induction: assume that (5) 
i = 0. . . . , n - 1 holds for f - 2, f - 1 and prove that it holds for t .  

Having multiplied the recurrence 
( T ( L )  - AI)en(,-~)+m = z(Bt-*,jm&(z-2>+j -t Wr-1 - Wjmen(r-i)tj + B,'-l,jmen,+j) 

I V Krasovsb and V 1 Peresada 

j 

(1 1) 
(where T ( L )  is taken in the form (2)) by B&m and performed the summation over m, we 
express en,+i in terms of the other elements from the resulting relation and substitute this 
vector in the right-hand side of (5) to get (up to a matrix M such that M x  = 0) 

-x(VP),v,kj(f%$+k, em+,) = -(BF-'~[(A~-I - h1)Pr-l + BT-zPt-2 + (VP)t-l l) i j  (12) 
rk 

(the special form of (1 1) enabled us to cancel the resolvent in the last term). 
Now expressing the blocks of V in terms of the blocks of T ( L )  and H ,  we deduce that 

(12) is equal to Pt,ij and thus conclude the proof. 
Let us now simplify expression (10). First we note that there is a generalization 

of the above-mentioned property e, = p f ( L ) e o  of J-matrices to block-tridiagonal ones; 
namely, if X is a block-tridiagonal self-adjoint matrix with non-degenerate off-diagonal 
blocks of block dimension n in the basis (ez)yd , then it is easy to show by induction that 
ens+h = rmz p&,(Z)em. SO we may rewrite the inner product in (IO) as 

"-1 

(Re.,+r, et) = C(RP:~$'-"(T(L) - nr)e,,,, ei) .  (13) 

(14) 

m=O 

Expanding equation (13) by induction in index s and substituting it  in (IO), we get 

1 Wij(A) = C ( V P ( A ) ) , , k j  
.Y k 

(15) 
where Qf'L1(h) are the matrix polynomials of the second kind associated with T ( L ) .  They 
are defined by the same recurrence as PT'L)(h) for s = 2,3 , .  . ., but with the different 
starting conditions, namely QE'L' = 0, Qf" = B-I.  0 

So (9). (15) are a necessary and sufficient condition for h to be a point of the discrete 
spectrum of H .  The corresponding eigenvectors are P x ,  where x is a solution of (5 )  
f=0. i = O  ,..., n - l w i t h A .  

It is worth noting that in deriving (9). (14) we have not used any special properties 
of T ( L )  other than its block-tridiagonal structure. Thus the condition (9), (14) may be 
employed to find the discrete spectrum of any H = HO + V ,  where H and HO are self- 
adjoint and block-tridiagonal with non-degenerate off-diagonal blocks; Hoij = Hoji; and V 
is finite-dimensional. 

As was shown by Lifshitz [ l l ,  121, the change in thermodynamic functions due to an 
impurity described by a finite-dimensional operator V can often be represented as follows 

Splf(H) - f ( H 0 ) )  = Sm " $ ( x ) &  + x I f ( x i d )  - f ( X i b ) )  (16) 
--m i 
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(we assume for simplicity that HO has only continuous spectrum C(H& the trace with 
arbitrary Ho can be reduced to a sum of such traces (cf subsection 3.1.2)), where 
H = HO + V ;  $(x) is a so-called shift function defined in a certain manner on C(H& 
$ ( x )  = 0 if x 6 C(H0); the summation is over the points .rid of the discrete spectrum of H 
(xLb is the boundary nearest to x;d of C(H0)). 

We are interested in the case when H and HO are block-tridiagonal with non-degenerate 
off-diagonal blocks. Such a structure of H and HO will now enable us to find a much 
simpler equation for $(x) than the original one proposed by Lifshitz [ 111. 

Consider the equation 

( H  - z l ) f  = g Imz t 0 Rez  E C(Ho) (17) 
where H = HO + V (the dimension of a block is n )  and Ve; = 0 if i 2 r .  

Let us introduce the following notation for vectors: 

Then (17) is a recurrence relation for fr, from which we obtain 

fs = ps fo + Y& yo = 0 

where d, are the blocks of H in the form (2); P/(z) is the ith matrix polynomial associated 
with H from which the first k block-rows and k block-columns are removed (P; Pp), 

Applying the resolvent R = (Ho - z I ) - l  to both sides of (17) gives 

Successively taking the inner products of e ; ,  i = 0, . . . , n - 1 with both sides of (20). we 
have 

where K,, is a block of matrix K (with matrix elements K ; j  = ( R V e j ,  e ; ) )  divided into 
blocks n x n. 

By substituting (18) in @ I ) ,  

- 
Introduce the determinant (henceforth we assume that Hot, = Ho,~ = Hoj i )  
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and the algebraic complement Ajk of the element ( I  + E, K O ~ P , ) ~ ~ .  (We shall soon see 
that t ( x )  is expressed in terms of A(z)). 

I V Krasovsky and V I  Peresada 

Note that when HO = T(L) 

A(z) = I & )  + Wij (~) l : - '  (W 
where Wij(z)  is defined in (15). We see that (24) is the same as the determinant in (9), 
only now z is essentially complex. 

From (22) 

- 
In fact, here we have introduced a new operator KopY,g = Cy:;(KopY,g)iei for which 
we, naturally, retained the same symbol KhY,. (Moreover we shall also need the similarly 
defined operator Ys.) Using (18) and then (25), we rewrite (20) in the form (f = &) 

Consequently 

+Az(RVe. ,+i ,  Y:ei) . (26) 
si I 

As we show in the appendix, the numerator in this equation is equal to A'(z). Thus 

Sp(k - R)  = -A'(z) /A(z) .  (27) 

A similar equation, Sp(E-R) = - A ; ( Z ) / A k ( Z ) ,  was obtained by Krein [13] for an arbitrary 
(not necessarily block-tridiagonal) form of H. Here 

A k  = 16ij + (RVej, ei)16'. 

We see that A(z )  = cAk(z), where c is a constant factor. To find this factor, we shall 
compare the asymptotic behaviour of A(;)  and A,(z) as Imz -+ +CO. Obviously 

Adz)  = 1 +0(1 / Imz)  Imz --f +CO (28) 

As to A(z) ,  we first see by induction that 

F ( z )  = (R(z)<Z;"(Ho - zZ)ei, enr+d 

= P,.,,(z)(R(Z)ei,e.,+~) + ( B ; , B , _ , . . . ~ ~ , - ' ) , ~ ( B ~ B I  - I - - I  ~ . . B t - z ) i x & , - ~  

s = r - l,t,f + 1 (29) 

where &, Bi are the off-diagonal blocks of H and Ho, respectively. On the other hand, 
F ( z )  = E:=,, E;;d yqdR(z)en,+/, e,,+& Y ~ I  = constant. Expressing P,.,,(Rei, %+k) 
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from (29) and substituting it in the matrix element 8, + ~ J k ( V P ) , T , y ( R e n . + ~ ,  ej) of (23), 
we get 

A ( z ) = d e t M + O ( l / I m z )  I m z + + w  

Mi, = 6 i j - ~ ~ B o B I " ' B , _ I V , , + 1 B , ~  " 1 B,..I"' --I E-I 0 ) i j .  
I 

Thus c det M. 
Our equation (23) for A is simpler than Krein's one for Ak, because n is often less than 

r and in approximate applications of the method, much less (see section 4). When n = 1, 
we simply have 

Taking into account (28). let us define In A&) in the upper half-plane so that it be a 
holomorphic function there and lnAa(z) = 0(1 / Imz) ,  Imz 4 +m. Then. as was shown 
by Krein 1131, almost everywhere on the real axis (we have substituted c - ' A ( z )  for Krein's 
original Ak(z))  

where 6 is an integer. Practically, to find e ( x ) ,  we simply take any continuous branch of 
- l i m , ~ ~  argA(x + iy) and add to it an integer constant so as to satisfy (16) with some 
n. stmple testing function, e.g. for f ( x )  = x 

I 

When HO = T ( L ) ,  we use (24) for A(z). In the limit as y 4 0 from above, the relevant 
integrals 

x = T ( i , ) .  (33) 
When Ho = L, we obtain, using (30), 

Thus, equations (16), (31). (32), (24). (15), (33) complete our solution of the problem 
of finding changes in thermodynamic functions. 

3. Examples 

Here we have chosen as examples the problems whose solutions, in appropriate limiting 
cases, are either already known or can be obtained independently using the scalar variant 
(n = 1) of our theory, Note that although we have chosen spin systems, problem for linear 
chains of mechanically oscillating particles also suggest themselves immediately. 
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3.1. Linear chain wirh impurily 

Consider a linear system of spins s with a point spin defect a described by the Heisenberg 
Hamiltonian involving interactions between nearest and next-nearest neighbours 

I V Krasovsky and VI Peresada 

An additive constant is chosen so that H ( 0 )  = 0 where IO) is the state of total spin alignment 
(s'l0) = 0, I = il, f 2 . .  . . ; &IO) = 0). We are going to find the change in the 
thermodynamics due to the impurity in the approximation of non-interacting magnons and 
discrete energy levels in the one-magnon space 'H of the system, that is in the space spanned 
by the vectors ho = u-lO)/&, hi = s ; \ O ) / f i ,  i = &I, 552,. . . . 

First we note that the system is invariant under the reflection with respect to the site of 
the impurity spin. Hence, H splits into the two subspaces invariant under H: Hs spanned 
by e; = ho, ef = (hi + h - i ) / A  and 'Ha spanned by e: = (hi - h-i)/&. Accordingly, 
H = Hs @ Ha. Acting with H on vectors e;(.;) and using the commutation relations, we 
obtain a matrix in this basis which can be written as follows: 

(36) K(a)  = +L2 t V m  + (WJi t J 2 )  a ) l  
where L has the form (7) with 

b = f l  f i = * s J ~  y = l s J z l  a : = a 2 + 2 b 2  (37) 
B 

2 3  
a = -  

(in the double sign (4 or T) the upper corresponds to J2 > 0; the lower, to JZ < 0), 

v,= ( B' y' = i y  - Joz& 

~ $ 1  = 2s(J0i + J02 - J I  - J2)  

v, = (w + Val  0 ) 

TY+VSI I; 2) 
B' = 4@ - JOi& 

Y' 0 vs3 

vs2 = oJ,, -s(JI + 52)  ~ $ 3  = u J , ~  - S J Z  

U,, = S ( J Z  - J r )  +oJ,I ~ a z  = U J-2 - sJ2. 
0 va2 

So we can use the general theory for T ( L ) +  I' = TL'+ V,(a), the multiple-of-unity operator 
being easily accountable for in the results. 

In order to evaluate the determinant (9) using (15). we express T L ~ ,  V,(,) as block- 
tridiagonal matrices with blocks 2 x 2 and then calculate V P  to get 

Thus we need p ; f L 2 ( A ) ,  QFLz(A) only for f = 0, 1. 
The integrals 
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( p ( $ )  is given by (8)) reduce to the following: 

If -5 E [O. 11, the integrals are taken in the principal value sense. As -5 is not necessarily 
real, note that the branch of the square root in (40) is the following: for z = rei? where 
'p E (-a, a ] ,  Jz = ,,Geiplz. 

From this point onwards, we have to proceed with the calculation of the discrete 
spectrum and the shift function separately. 

3.1.1. Discrete energy levels. Substituting (38), the matrix elements of PF"(A), QTL'(h), 
f = 0 , l  and the integrals with w = 1 in (9), (15). we get an algebraic equation with square 
roots whose solutions are discrete energy levels. It is too cumbersome, however, to write 
it out explicitly. 

Now let us consider the limit as Jz ,  JOz + 0. By taking the limit under the integral 
sign in (39) and using the fact that in this limit H becomes a J-matrix and (that is 
why) xo = 1; X I  = (A =k a - U ~ ( ~ > I ) / ( ~ '  7 b),  we obtain from the first row of (5) 
(n = 2, t = 0. i = 0) the final conditions 

and the eigenvalues of H to be E = 4sJlz. 
When U = s = 4, these conditions reduce to those found by Oguchi and Ono [14]. 

3.1.2. The shift function. The change in various thermodynamic functions (per atom) due 
to the impurities in the approximation of non-interacting magnons can be written as follows: 

A F  = x S P U ( W  - f WO)] (42) 
where x is the concentration of the impurity spins which we consider independent; NO is 
H with s = U  and also J,i = J i ,  i = 1, 2. 

To apply (16) here, we write 

AF = ~[spI f (Ht)  - f ( T ( L ) ) l -  Sp{f(Hoi) - f(T(L))tI 
1=s.a 

where T ( L )  = 7 L 2  + ( 2 s ( J ,  + J z )  ?ca)l. 

first by applying (33) 
So the final shift function is composed of the four addends, each of which is evaluated 
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second, by substituting (43) in (15) in which the limit as y + 0 is already taken, and third, 
by calculating the argument of (24) divided by H. Finally, (32) is employed to decide upon 
an additive integer constant in the resulting sum as prescribed in section 2. 

I V Krasovsky and V I  Peresada 

In the limit as Jz ,  J,,2 + 0, the shift function takes the form 

where E = 4sJlz ;  K ,  O are defined in (41). 
This equation per se (as well as (41)) is, of course, found much more easily if we set 

32 = Jo2 = 0 at the very beginning thus reducing H to a J-matrix and proceed according 
to the scalar variant (n = I )  of the theory. Formula (44) follows then from (34). 

Substituting (44) in (I@, we find changes caused by the impurities in any desired 
thermdynamic quantity (setting x = I). 

As the density of states q ( x )  is defined from the relation F = 1 f ( x ) q ( x ) d x ,  it readily 
follows from (42), (16) that ~ ( x )  = ))o(x) - ,y<'(x), where ~ ( x ) ,  q&) are the densities of 
one-magnon states (in the continuous spectrum) in the chain with impurities and the ideal 
chain, respectively. 

3.2. Two-magnon bound states 

Consider a linear chain of spins described by the Hamiltonian (35) but without the impurity. 
We are now interested in the two-magnon space B of this system. G is spanned by the vectors 
D(i, i - j )  = s;s,:lO)/Zr, i # j ;  D(i.0) = sFs,7lO)/(2,/-). 

spanned by q(k .  p) = limN,, E,,, eikmD(m, p )e ' kp /2 / f i7  p = 
0, I , .  . . , where the summation is over all sites m of the chain containing N sites, there 
may exist levels of the discrete spectrum known as the energies of bound states of two-spin 
waves. These energies for the system considered here were found by Ono el a1 [I51 in the 
case s = T t .  

The matrix of H in the basis of vectors p(k, p), p = 0. I ,  . . . can be represented in a 
form similar to (36). (37) 

In each subspace 

1 

H = i L z  + V t ( ~ s ( J I  + Jz )  * E)Z 

where L has the form (7) with 

a = -  b = f i  p = &2Jls cos $ y = 12 Jzs cos kl a = az + 2bZ B 
2 f i  

In the signs (k,~) the upper one is taken when 

(1) 

(2)  

k E [O, $1 and JZ  z 0 

k E 1%. H I  and J2 < 0 

t How'ever, we used the approximate methods of [I71 for comparison wilh our exacl result% 
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and the lower when 

(1) 

(2) 
Repeating the reasoning of subsection 3.1, we obtain the condition for the energies of 

bound states. In the limiting case J2 -+ 0, this condition becomes equivalent to that found 
by Wortis [16], see also [17,181. 

k E [O,  $1 and 52 < 0 

k E [$, zl and J2 > 0. 

4. Conclusions 

Let us stress the following points. 
(1) As we saw in section 2, there is a clear connection between the formulated problems 

for H = T ( L )  + V and the well-developed theory of orthogonal polynomials, which, in 
particular, allows us to treat a wide class of operators N that way. 

(2) The method gives approximate solutions for an even larger class of Hamiltonians. 
The point is that if a (2n + 1)-diagonal representation of a Hamiltonian is not analytically 
available, we can easily obtain it numerically. Let us start the discussion with the scalar 
variant (n = 1) of the method. As is known [7,19,20], given a symmetric matrix H and a 
starting vector q , we can reduce H in the subspace spanned by (0, Hlp, HZp,.  . . , to the 
tridiagonal (i.e. J-matrix) form by means of the Lanczos algorithm. (The resulting J-matrix 
J tumes out then to be defined in the basis obtained by orthogonalization of the sequence 
(0, H q ,  H'lp, . . .). Practically, of course, we can find only a finite number, say r ,  of the 
elements of the J-matrix. Already at this step, we can obtain approximations to the discrete 
energy levels and the quantities ( f ( H ) q .  q)  by utilizing the properties of polynomials p / ( h )  
and the quadrature equation 191, respectively. However, if the asymptotic behaviour of the 
elements of J (.lit as i , k  4 00) can be found, then it becomes possible to employ a 
more powerful theory. A review of the first developments in this (recursion) method and 
its applications (except for 11-51) is given in [7]. Further progress, with emphasis on the 
asymptotic behaviour of Jix, is partly reflected in [21]. Other examples of the uses of the 
technique include, in particular, [22,23]. Note, by the way, that it is possible to broaden 
the range of applications of the method by considering recurrence relations and J-matrices 
in a Hilbert space of operators and making use of the Liouville equation [24-271. 

The main fact we want to stress in this section is that, if the asymptotic behaviour of 
Jik as i, k + 00 coincides with that of the elements of a J-matrix L which corresponds to 
a known system of orthogonal polynomials, we can apply the theory of section 2 for n = 1 
(since then J M L + V ,  where V is truncated r x r )  [SI and also obtain results connected 
with the evaluation of the local density of states. There follows an example of such results 
already published in 1970 [2]. 

An analytical approximation to the distribution function g(&) of the squared harmonic 
oscillation frequences of a single-atom cubic lattice is written as follows: gapp,(x) = 
Pch(X)/R(x), x = &/Eman. where 

and pch(x) is defined in section 2. The starting vector p used here is one collinear with the 
displacement of one of the atoms of the lattice along one of the fourfold axes. 

For n > 1, we can apply the algorithm similar to that of Lanczos which involve n 
starting orthonormal vectors and reduce a matrix to the (2n + 1)-diagonal form. The further 
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parallel between the n = 1 and n z 1 cases is clear, but implementation is non-trivial, the 
major problem once again being the estimation of the asymptotic behaviour of the matrix 
elements. To the authors' knowledge, a systematic work on the subject has not EO far been 
carried out. 

I V Krasovsb and V 1 Peresada 

Appendix 

Here we prove that A'(z) is equal to (henceforth, we assume summation over repeating 
indices) 

We see that the first terms in (Al) and (A2) are equal. Furthermore, as it is easy to show 

So the second term in (A2) becomes 

Y ~ , i n ~ + i ~ q . i r i  &,;ai = AJkP,,idRVem+i. ej) .  

On the other hand, the second and the third terms in (AI) can be written as follows: 

Ys,i nq+iXq.lsi (A31 

X,,I.~, = -AjaPt,mx(RVe,,+i, ej)(RVe,,+,, en9+d + A(RVe,,+i, e,,+[). (A41 

We shall now show that X, = 2, and thus complete the proof. That this equality holds 
for q = 0 is seen directly from (A4): Indeed, we write the first addend in (A4) in the form 
-Ajk(P,,mk(RVen,+m, e,) +&k - G1k)(RVe,,+i. el) and employ the well-known relation for 
a matrix G: AjkG~k = S j ~ d e t G ,  where Ajk is the algebraic complement of G,w. 

Assuming 2-1 = X-I = 0, we may proceed by induction. From the recurrence relation 
(cf equation (1 1)) (no summation over 4!) 

(Ho - i0en(4-~)+m = ( ~ - Z J A T ( + ) + )  + (Aq-i - Z O j d n ( ~ i ) + ~  + E&,,menq+j) 

where A,, Bs are the blocks of Ho written in the form (2),  we express e,,+! and substitute 
it in (A4) to get 

Xq,l.vi (BiLi(Z1 - A q - ~ ) h j X q - ~ , j n  - ( E q - l  - I  B*- 4 z ) I .X j 9 -2.jri 

-E;! I ,Im P ~ g a  Ajk ( R  Venr+iv e j )  (Vezr+, , qq- I )+m). (A5) 

Deriving (As), we used the fact that (Ve,,?+i. = 0 whenever s > q ;  and the 
summation over q in (A3) is from 0 to s - 1. 1: no! remains for us to express the 
matrix elements of V in (A5) in terms of A,, E,. A,, Et (blocks of HO and H); replace 
Xq-l-  X,-z by Z,-z; and as a result we have a relation which yields Z,.j.$i. 
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